1. Corporate Profile

2. Epigenetic Mechanism Review

3. Prostate Cancer Rationale Review

4. Phase 1 Details & Early Results

5. Enzalutamide Combination Trial – Phase 2a

6. Next Steps
Share Structure Profile

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Founded</td>
<td>Corporate spin out from Resverlogix in June 2013</td>
</tr>
<tr>
<td>Status</td>
<td>Private company, full reporting issuer</td>
</tr>
<tr>
<td>Cash Raised</td>
<td>US$44MM @ $1.00 USD per share (all pre-clinical results based)</td>
</tr>
<tr>
<td>Enterprise Value est.</td>
<td>$325 USD (2.50 USD/Share) est.</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>125.2 MM</td>
</tr>
<tr>
<td></td>
<td>134.0 MM fully diluted</td>
</tr>
<tr>
<td></td>
<td>10MM additional shares will be sold shortly</td>
</tr>
<tr>
<td>Cash Burn</td>
<td>$2 MM per quarter - Current</td>
</tr>
</tbody>
</table>
Epigenetics Mechanism

1. Corporate Profile
2. Epigenetic Mechanism Review
3. Prostate Cancer Rationale Review
4. Phase 1 Details & Early Results
5. Enzalutamide Combination Trial – Phase 2a
6. Next Steps
Epigenetics, the Mechanism Behind Our Approach

- Early Epigenetic Approach
- Advanced Epigenetic Approach
Resistance to several standard of care treatments does not impede sensitivity to BETi
Epigenetic combination therapies - addressing resistance & increasing revenue of $B franchises

Current multi $B Markets
- AR antagonists (lead program)
- PD-1/PD-L1Mabs
- CDK 4/6 inh.
- PARPi

DNA Repair
PARPi (Breast, Ovarian, CRPC)

Hormone-Modulaton
Androgen (CRPC)
Estrogen (breast cancer)

Kinase-Signaling
PI3K (breast, CRPC)
RAF (melanoma)

Immuno-Oncology
Checkpoint Inhibitors (melanoma, NSCLC, etc.)

BRD4
Combination with ZEN-3694 (BETi)

Increase duration of therapy
Increase patient pool (responders)
Differentiation
Increase IP life

Revenue

Combination with ZEN-3694 (BETi)
1. Corporate Profile

2. Epigenetic Mechanism Review

3. Prostate Cancer Rationale Review

4. Phase 1 Details & Early Results

5. Enzalutamide Combination Trial – Phase 2a

6. Next Steps
ZEN-3694 Potential in Patients Developing mCRPC Resistance to Enzalutamide

ZEN-3694 works down stream of current therapies

ZEN-3694 works where resistance to existing lead drugs, like Enzalutamide, has evolved

The combination of ZEN-3694 and enzalutamide shows strong synergy and is expected to reduce the development of resistance

Cell Viability in VCAP P3 + 0.1 nM R1881 Treated with various concentrations of ZEN003694 with Enzalutamide (3 Day)

- % proliferation compared to DMSO-treated control
- concentration (uM)
Potential Resistance Pathways in CRPC in response to Enzalutamide and/or Abiraterone

Alterations of AR
- Mutations, amplification, splice-variant

GR up-regulation

Loss of AR

Other mechanisms
- MYC/MYCN, BCL-2, FOXA1, ERG, ETS, CHD1, SRC, AKR1C3

Inhibition of AR signaling

Down-regulation of GR

Decrease in NE markers
- Activity in AR- cells

BETi downregulates
- MYC, ERG, BCL-2, BRD4 interacts with ERG

BETi dependent mechanism

Resistance mechanism

ZN-3694 shows good efficacy in different CRPC models that are resistant to AR antagonists
Phase 1 Details & Results

1. Corporate Profile
2. Epigenetic Mechanism Review
3. Prostate Cancer Rationale Review
4. Phase 1 Details & Early Results
5. Enzalutamide Combination Trial – Phase 2a
6. Next Steps
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Small, MD</td>
<td>University of California, San Francisco (UCSF)</td>
<td>Developed abiraterone - #2 CRPC drug, owned by J&J.</td>
</tr>
<tr>
<td>Rahul Aggarwal, MD</td>
<td>University of California, San Francisco (UCSF)</td>
<td></td>
</tr>
<tr>
<td>Howard Scher, MD</td>
<td>Memorial Sloane Kettering Cancer Center (MSKCC)</td>
<td>Developed enzalutamide - #1 CRPC drug, now owned by Pfizer. Developing ARN-509 for J&J</td>
</tr>
<tr>
<td>Wassim Abida, MD, PhD</td>
<td>Memorial Sloane Kettering Cancer Center (MSKCC)</td>
<td></td>
</tr>
<tr>
<td>Joshi Alumkal, MD</td>
<td>Oregon Health Sciences University (OHSU)</td>
<td>Expert in epigenetics in prostate cancer research</td>
</tr>
<tr>
<td>Allan Pantuck, MD</td>
<td>University of California Los Angeles (UCLA)</td>
<td>Involved in enzalutamide and provence development</td>
</tr>
<tr>
<td>Elizabeth Heath, MD</td>
<td>Karmanos (Wayne State)</td>
<td>Genitourinary oncology specialist</td>
</tr>
<tr>
<td>Mark Fleming, MD</td>
<td>Virginia Oncology Associates</td>
<td>Community site</td>
</tr>
</tbody>
</table>
ZEN-3694 development in mCRPC- Phase 1 single agent study results

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th></th>
<th>2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1H</td>
<td>2H</td>
<td>1H</td>
<td>2H</td>
</tr>
</tbody>
</table>

Single agent dose escalation; enzalutamide and/or abiraterone failures N~12

Single agent expansion at RP2D; same population as dose escalation N=12

Key Learnings
- Maximum tolerated dose (MTD) defined ✓
- Dose proportional PK ✓
- Good safety profile, prolonged dosing without dose interruption/reduction is feasible ✓
- Target modulation shown at doses below MTD ✓
- Some single agent anti-tumor activity/disease stabilization observed in multiple patients ✓

Single agent study key to understanding drug characteristics and supporting combination study
Patient X: Prolonged disease stabilization

Prior Therapy for mCRPC

- Provenge
- Abiraterone: 5/22/2016 – 8/12/2016 – primary resistance

- ZEN-3694: 8/24/2016 – 7/16/2016, 45 weeks

Study Entry

32 Weeks

Stable mediastinal nodes over 8 months
1. Corporate Profile

2. Epigenetic Mechanism Review

3. Prostate Cancer Rationale Review

4. Phase 1 Details & Early Results

5. Enzalutamide Combination Trial – Phase 2a

6. Next Steps
ZEN-3694 Phase 2a Study Design
Phase 2a, open label, combination, 3x3 dose escalation/confirmation

mCRPC, chemo-naïve, enzalutamide naïve, prior progression on abiraterone

- X mg QD ZEN-3694
- 160 mg QD enzalutamide
- N = 3 (planned)

Dose escalation cohorts

MTD / RP2D Confirmation

Seven sites, UCSF and MSKCC leading

MTD: Highest dose with \(\leq 1/6 \) patients with DLT

Expansion Cohort A
Enza naïve, progression on abiraterone

Expansion Cohort B
Biochemical progression on enzalutamide
ZEN-3694 + enzalutamid is active: Increase in treatment duration relative to single agent enzalutamide

*expected with single agent enzalutamide
Strong PSA response with ZEN-3694 + enzalutamide in patients with poor prior response to abiraterone.

PSA profile of 5 patients with poor prior response to abi.

PSA profile of 3 patients with significant and durable PSA response.

Prior abiraterone

ZEN-3694 + enzalutamide

Cohort 3 (Abi)

Cohort 1 (Abi)

Cohort 2 (Abi)

Prior abiraterone

ZEN-3694 + enzalutamide

PSA Percent Change from Baseline

Prior Abiraterone PSA Response at 12 weeks

ZEN-3694 PSA Response at 12 Weeks

Cohort 3 (Abi)

Cohort 1 (Abi)

Cohort 2 (Abi)

Cohort 2 (Abi)

Cohort 2 (Abi)
Extensive translational medicine plan for deciphering MOA and designing future biomarker driven trials

Whole blood

- **CTCs**
 - Enumeration, AR-C, AR-N
 - MYC, AR-V7, GR
 - HRD signature

- **Whole blood**
 - PD marker assay to measure target modulation
 - Nanostring cancer immune panel
 - AR-V7 target engagement

- **Plasma**
 - Exploratory, Metabolomics/exosomes/protein markers, cytokine panel

Tumor biopsy

- **RNA-seq**
 - Expressed mutations
 - Fusions and splice variants
 - Expression profiles and pathway analysis (AR/GR signaling, NFkB, etc.)
 - Immuno-onc markers

- **⅓ FFPE**
 - IHC
 - MYC
 - AR, GR
 - PD-L1, CD8+ TIL
 - Histology

- **⅓ Frozen**

Translational program designed for molecular profiling ARi resistant patients and effect of ZEN-3694 on resistant markers, potential correlation of response to molecular signature
Zenith’s BETi program is clinically differentiated

Other Clinical BETi
- Thrombocytopenia DLT, require 1-2 weeks off
- Poor PK/PD characterization
- Off target tox, CYP liabilities
- Conservative, suboptimal clinical strategy

Zenith’s BETi (ZEN-3694)
- On target tox profile
- Safety profile allows continuous dosing, no thrombocytopenia
- Good clinical exposure with target modulation, no CYP liabilities
- Focused clinical strategy, leader in combination approach

Other companies developing BETi for CRPC
- Gilead – Phase 1b/2a (Single agent and combination)
- GSK – Phase 1, just initiated (combination)
Next Steps

1. Corporate Profile
2. Epigenetic Mechanism Review
3. Prostate Cancer Rationale Review
4. Phase 1 Details & Early Results
5. Enzalutamide Combination Trial – Phase 2a
6. Next Steps
ZEN-3694 Synergizes With Several Standard of Care Cancer Drugs
Repression of BET activity sensitizes homologous recombination–proficient cancers to PARP inhibition

Cancer Cell
BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency

Cell Reports
BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer