Acquired resistance to anti-cancer therapies through epigenetic mechanisms

- Tumors initially respond to treatment
- Acquisition of drug resistance almost invariably occurs
- Epigenetic mechanisms often involved
- Epigenetic inhibitor to prevent and/or reverse resistance
Targeting epigenetic mechanisms of resistance to anti-cancer therapies: examples with the BET bromodomain inhibitor ZEN-3694

Two examples from recent clinical trials with ZEN-3694:
• Reversion of ARSI resistance → AR-independent resistance in prostate cancer
• Induction of synthetic lethality → PARP inhibitor in BRCA1/2 wild-type triple-negative breast cancer
A Phase 1b/2a Study of the Pan-BET Bromodomain Inhibitor ZEN-3694 in Combination with Enzalutamide in Patients with Metastatic Castration Resistant Prostate Cancer

Phase 1b/2a: ZEN-3694 in combination with enzalutamide in mCRPC
(NCT02711956, NCT04145375)

Summary of findings:
- 75 patients dosed, MTD not reached → RP2D 96mg
- ZEN-3694 target engagement seen in whole blood and tumor biopsies
- Clinical activity at well tolerated doses, prolonged daily dosing without dose interruptions/reductions
- Clinical activity seen at LO and HI doses
 - One ongoing patient at LO dose (> 4.3 years with PSA90 response, prior progression on ABI)
 - One ongoing patient at HI dose (> 2.7 years, prior progression on bicalutamide, ABI, and ENZA)
- Median radiographic progression-free survival of 9.0 mo vs. 3 mo (historical value for second line ARSI)
- Evidence for activity in tumors from patients with low androgen receptor (AR) signaling

ABI = abiraterone; ARSI = AR Signaling Inhibitor; ENZA = enzalutamide; mCRPC = metastatic castration-resistant prostate cancer, RP2D = recommended Phase 2 dose
HI Dose = 96 mg ZEN-3694, LO Dose = 48 mg ZEN-3694

Aggarwal et al. CCR 2020
Loss of AR signaling is associated with gain of neuroendocrine characteristics (NEPC): lineage plasticity

- Shift from adenocarcinoma (AR-dependent) towards neuroendocrine (AR-independent) → lineage plasticity
 ⇒ Involvement of several epigenetic processes
- Occurs in ~20% of patients treated with ARSI → associated with poor prognosis
- Treatment-induced NEPC (t-NEPC): limited treatment options (unmet treatment need)

AR signaling score: 21 gene signature upregulated upon incubation of prostate cancer cell line with androgen

Integrated NEPC score: 70 gene signature upregulated in NEPC

ZEN-3694 blocks a BRD4/E2F1 lineage plasticity program associated with ARSI resistance in prostate cancer

- Identification of a BRD4/E2F1 axis responsible for lineage plasticity in prostate cancer
- Two t-NEPC patients on ZEN-3694 + ENZA trial with BRD4HI, E2F1HI, ARLO, (+ AR repressed signature) had longer time on study

Baseline tumor biopsies from four evaluable patients had t-NEPC signature

Higher expression of BRD4, E2F1, and lower AR activity was associated with longer time on study

ARSI = AR signaling inhibitor, t-NEPC = treatment-induced neuroendocrine prostate cancer

Mechanisms of resistance to ADT and ARSI in prostate cancer

Prostate Cancer (HSPC, CRPC)

ADT/ARSI THERAPY

Maintenance of AR signaling (80%)
- AR amplification (enhancer) + mutations
- AR splice variant (AR-V7)
- Upregulation of alternative steroid receptor (GR)

AR repression (20%)
- AR-independence (low AR, AR null)
- Transdifferentiation + neuroendocrine markers (t-SCNC, t-NEPC)
- Activation of alternate proliferation pathways (BRD4/E2F1-dependent)

- Recent approval of ARSIs in earlier disease setting (HSPC) is associated with increased cases of AR-repressed CRPC
- Patients with loss of AR activity have a worse prognosis on ARSI and fewer treatment options

ARSI = Androgen Receptor Signaling Inhibitor; CRPC = castration-resistant prostate cancer; GR = Glucocorticoid Receptor; HSPC = hormone sensitive prostate cancer
Mechanisms of resistance to ADT and ARSI

Prostate Cancer (HSPC, CRPC)

Maintenance of AR signaling (80%)
- AR amplification (enhancer) + mutations
- AR splice variant (AR-V7)
- Upregulation of alternative steroid receptor (GR)

AR repression (20%)
- AR-independence (low AR, AR null)
- Transdifferentiation + neuroendocrine markers (t-SCNC, t-NEPC)
- Activation of alternate proliferation pathways (BRD4/E2F1-dependent)

Increased ZEN-3694 + ENZA activity

- Recent approval of ARSIs in earlier disease setting (HSPC) is associated with increased cases of AR-repressed CRPC
- Patients with loss of AR activity have a worse prognosis on ARSI and fewer treatment options

ARSI = Androgen Receptor Signaling Inhibitor; CRPC = castration-resistant prostate cancer; GR = Glucocorticoid Receptor, HSPC = hormone sensitive prostate cancer
Mechanisms of resistance to ADT and ARSI

Prostate Cancer (HSPC, CRPC)

How to enrich for patients with AR-independent prostate cancer (HSPC, CRPC)?

Biopsies:
- Hard to get (bone)
- Archival biopsies might not be reliable (esp. before prior ARSI)
- What is the best signature(s)/score cut-off?
- How to implement in the real world?

→ Clinical history readout to enrich for AR-independence

ARSI = Androgen Receptor Signaling Inhibitor; CRPC = castration-resistant prostate cancer; GR = Glucocorticoid Receptor, HSPC = hormone sensitive prostate cancer
Low AR signaling associated with **shorter time** (primary resistance) on ARSI in patients with mCRPC

Low AR activity in CRPC tumors associated with shorter time on ENZA

Low AR activity in CRPC tumors associated with shorter time on ABI

Low AR activity associated with **rapid progression** (primary resistance) on ARSI

ABI data calculated from Abida et al. 2020, ENZA data from Alumkal et al. 2020
Low AR signaling and primary ABI resistance associated with longer time on ZEN-3694 + ENZA in patients with mCRPC

Low AR activity in baseline biopsies associated with longer time on ZEN-3694 + ENZA

Patients with prior primary resistance to ABI associated with longer time on ZEN-3694 + ENZA

<table>
<thead>
<tr>
<th>Time on prior ABI < 6 months</th>
<th>Time on prior ABI > 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events</td>
<td>4</td>
</tr>
<tr>
<td>Median PFS (months)</td>
<td>11</td>
</tr>
</tbody>
</table>

Low AR activity and rapid progression on prior ABI associated with longer time on ZEN-3694 + ENZA study
Poor PSA responses associated with lower survival in mHSPC and mCRPC

Latitude Phase 3 trial (mHSPC), Sequencing ABI and ENZA trial (mCRPC)

Lack of PSA50 response with ABI is associated with lower survival of patients with mHSPC

Failure to reach PSA ≤ 0.1 ng/ml nadir with ABI is associated with more rapid progression and lower survival

mCRPC patients with poor response to 1st ARSi have a worse response to a 2nd ARSi

<table>
<thead>
<tr>
<th>Time to confirmed PSA progression on 1st ARSi</th>
<th>HR (95% CI), p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3 mo</td>
<td>< 3 mo</td>
</tr>
<tr>
<td>% of patients with PSA30 response on 2nd ARSi</td>
<td>40% (21/53)</td>
</tr>
</tbody>
</table>

2.92 (1.5-5.9), p=0.003

Poor PSA response to ARSi is associated with:
- Rapid progression in both mHSPC and mCRPC
- Poor response to 2nd ARSi

Matsubara et al. 2020, Khalaf et al. 2019
Poor PSA50 response on prior ABI associated with longer time on ZEN-3694 + ENZA study

Lack of PSA50 response with prior ABI is associated with longer time on ZEN + ENZA

Radiographic PFS

- PSA50 response on prior ABI
- No PSA50 response on prior ABI

<table>
<thead>
<tr>
<th>PSA50 response on prior ABI (n=14)</th>
<th>No PSA50 response on prior ABI (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events</td>
<td>5</td>
</tr>
<tr>
<td>Median rPFS (months)</td>
<td>5.2</td>
</tr>
</tbody>
</table>

3/14 patients with PSA50 to prior ABI had rPFS > 6 mo
9/15 patients without PSA50 to prior ABI had rPFS > 6 mo

Prior poor PSA response on prior ABI associated with longer time on ZEN-3694 + ENZA study
~20% of mHSPC patients progress in less than 12 mo. on ABI (primary resistance) (LATITUDE trial)

- Primary resistance to ABI in either HSPC or CRPC is predicted to enrich for AR-independence
 ⇒ Enrichment for patients with predicted poor response to 2nd ARSI with fewer therapy options

Fizazi et al. 2017
Phase 2b mCRPC study design: Pre-select patients with poor response to prior ABI (AR-independent/BET-dependent) Scheduled start in August 2021

Objectives:
- Test ZEN-3694 + ENZA in mCRPC patients that have progressed on ABI
- Evaluate efficacy in both poor ABI responders/AR-independent and ABI responders
- Open label, randomized, Blinded Independent Central Review (BICR)

Key Eligibility Criterion
- mCRPC progressed on ABI
- Not candidates for chemotherapy (Physician judgment)
- Patients with prior enzalutamide/apalutamide/darolutamide excluded

Cohort A: Poor ABI responders/AR-independent*
- ZEN-3694 + ENZA
- ENZA

Cohort B: ABI responders
- ZEN-3694 + ENZA
- ENZA

Primary Endpoint
- rPFS Cohort A

Key Secondary Endpoints
- rPFS Cohort A+B
- PFS Cohort A
- PFS Cohort A+B
- OS: Cohort A

Collaboration with Astellas and Newsoara

*HSPC: < 12 months duration on prior ABI, or failure to achieve a PSA nadir of 0.2 ng/ml
CRPC: < 6 months duration on ABI, or failure to achieve PSA50 response
Epigenetic modulation by ZEN-3694 restores sensitivity to enzalutamide

- ARSI induces loss of AR signaling
- Gain of AR-independent features
- BET-dependent transcriptional reprogramming

ARSI

Epigenetic remodeling

AR-dependent CRPC

AR-independent CRPC
Epigenetic modulation by ZEN-3694 restores sensitivity to enzalutamide

- ZEN-3694 inhibits maintenance of AR-independence
- Restoration of ARSI sensitivity
Epigenetic modulation by ZEN-3694 restores sensitivity to enzalutamide

- ZEN-3694 inhibits maintenance of AR-independence
- Restoration of ARSI sensitivity

Single Agent ZEN-3694

START (48 mg ZEN-3694)

Time on Study (weeks)

PSA (ng/ml)

0 100 200 300 400

0 5 10 15

Dose hold

Dose hold
Epigenetic modulation by ZEN-3694 restores sensitivity to enzalutamide

- ZEN-3694 inhibits maintenance of AR-independence
- Restoration of ARSI sensitivity

Single Agent ZEN-3694

Combination ZEN-3694 + ENZA

Patients with PSA spike at w4 or w8
A Phase 1b/2 Study of ZEN003694 and Talazoparib in Patients With Triple Negative Breast Cancer (TNBC) and Without Germline BRCA1/2 Mutations

Aftimos et al. SABCS 2020 (PS11-10)
Induction of homologous recombination deficiency by ZEN-3694 and sensitization to PARP inhibitors in BRCAwt cells

- In breast cancer, only ~20% of patients are eligible to receive a PARPi (germline BRCA1/2 mutant)
- Additional clinical activity in advanced breast cancer is currently limited to somatic BRCA1/2 or germline PALB2 mutations, not in other DNA repair genes
- Acquired resistance limits the clinical activity of PARPi (recovery of DNA repair capacity)
- ZEN-3694 reduces the mRNA levels of several DNA repair genes as a potential mechanism of sensitization to PARPi
 - BRCAwt tumors
 - BRCA1/2 mutant tumors PARPi-resistant

Adapted from Sun et al. 2018
ZEN-3694 + talazoparib trial design (Phase 2, Pfizer/Zenith collaboration)

Patients with advanced TNBC and no germline BRCA1/2 mutations

Objectives:
- Show safety and activity of ZEN-3694 + talazoparib
- Identify potential biomarkers of response

Design:
- Dose escalation followed by Simon 2-stage, n= 17 1st stage, n=20 2nd stage

Patient population:
- TNBC: locally advanced or metastatic

Endpoints:
- Part 1: Safety, pharmacokinetics/pharmacodynamics, maximum tolerated dose, Phase 2 dose (RP2D)
- Part 2: Objective response rate (ORR), clinical benefit rate (CBR), duration of response (DOR), progression free survival (PFS)

Locally advanced/metastatic TNBC
- No germline mutations in BRCA1 and BRCA2 (gBRCA1/2m) (CLIA test)
- No prior progression during platinum treatment
- No prior exposure to BETi or PARPi

Dose Escalation
- Patients with at least one prior cytotoxic chemotherapy

Simon 2-Stage Dose Expansion
- < 2 prior chemotherapy regimens for mTNBC

NCT03901469
Common treatment-related adverse events (AEs)

<table>
<thead>
<tr>
<th>Grade 3/4 AEs across all cohorts</th>
<th>DE Cohort 1</th>
<th>DE Cohort 2</th>
<th>DE Cohort 3</th>
<th>Simon Stage 1</th>
<th>Total n = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
<td>Grade 3/4</td>
<td>Any Grade</td>
<td>Grade 3/4</td>
<td>Any Grade</td>
</tr>
<tr>
<td>ALT increase^</td>
<td>1</td>
<td>4</td>
<td>2 (G3)</td>
<td>5 (15.6%)</td>
<td>2 (G3)</td>
</tr>
<tr>
<td>AST increase^</td>
<td>1</td>
<td>3</td>
<td>1 (G3)</td>
<td>5 (15.6%)</td>
<td>1 (G3)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2 (G3)</td>
<td>1 (G3)</td>
<td>1</td>
<td>4 (12.5%)</td>
<td>1 (G3)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>1</td>
<td>1 (G3)</td>
<td>2 (6.3%)</td>
<td>1 (G3)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>3</td>
<td>4 (G3)</td>
<td>1 (G3)</td>
<td>13 (40.6%)</td>
<td>2 (G3)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1</td>
<td>2 (G3)</td>
<td>2</td>
<td>5 (15.6%)</td>
<td>2 (G3)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>6 (G3), 2 (G4) #</td>
<td>5 (G3), 1 (G4) #</td>
<td>1 (G3)</td>
<td>5 (G3), 1 (G4)</td>
<td>17 (53.1%), 2 (G3), 4 (G4) #</td>
</tr>
</tbody>
</table>

^ALT/AST self resolved

#DLTs (thrombocytopenia) = two patients in Cohort 1, one patient in Cohort 2

- 48 mg QD ZEN-3694 + 0.75 mg QD talazoparib selected as RP2D
- Thrombocytopenia reversible with dose hold and reduction in sensitive patients

List of Grade 1/2 AEs presented at SABCS2020 and available at https://www.zenithepigenetics.com/Science-Epigenetics/publications-posters
Sustained whole blood target engagement for > 8 hours
Similar exposure-dependent target engagement as prior trials in prostate cancer

CCR1

- 36 mg ZEN003694
- 48 mg ZEN003694

IL1RN

- 36 mg ZEN003694
- 48 mg ZEN003694

CCR1 Trend Line (4h)

- 002 mCRPC
- 001 mCRPC
- 004 mTNBC (48 mg)
- 004 mTNBC (36 mg)

IL1RN Trend Line (4h)

- 002 mCRPC
- 001 mCRPC
- 004 mTNBC (48 mg)
- 004 mTNBC (36 mg)
Inhibition of DNA repair and HRR gene expression in tumors from two TNBC patients On-Treatment

Significant inhibition of DNA repair (GSEA) in tumors

Inhibition of HRR gene expression in tumors

Patient #1 (25h Post-Dosing)

Patient #2 (3h Post-Dosing)

HRR= homologous recombination repair
Significant inhibition of oncogenic hallmarks in tumor biopsies On-Treatment (GSEA)

Volcano plot (Hallmark MYC V1)

Hallmark MYC V1

Inhibition of oncogenic hallmarks and perturbation of cell cycle regulation On-Treatment

Hallmark MYC V2

Hallmark E2F targets

Hallmark G2/M checkpoint

Hallmark mitotic spindle
Activity of ZEN-3694 + talazoparib in HRRwt TNBC tumors
Dose escalation + Stage 1 (December 2020)

Best overall tumor response

- Patients screened for absence of gBRCA1/2m for enrollment on trial
- Sequencing of tumor biopsies from patients to rule out somatic mutations in BRCA1/2 or PALB2
 ⇒ Combination activity unlikely due to single agent talazoparib

HRR= homologous recombination repair
Clinical activity of PARP inhibitors in advanced breast cancer

Limited activity in BRCA1/2 wild-type breast cancer patients

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Agent(s)</th>
<th>BRCA1/2 and PALB2 status</th>
<th>MUTANT</th>
<th>“WT”</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEN + TALA vs. single agents</td>
<td>ZEN-3694 + TALA</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BETi</td>
<td>✓</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>PARPi</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATRi</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>DNA damage response</td>
<td>ATRi + PARPi</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATRi + carboplatin</td>
<td>✓ (×)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEE1</td>
<td>✓ (×)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEE1 + PARPi</td>
<td>✓ (toxic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3K/AKT/mTOR</td>
<td>AKT† + PARPi</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AKT† + paclitaxel</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>panPI3Ki</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIK3CAi + PARPi</td>
<td>✓ (×)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mTORi + PARPi</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>MAPK</td>
<td>EGFRi + PARPi</td>
<td>✓ (×)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>αPD-1 + PARPi</td>
<td>✓ (×)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial clinical results (advanced breast cancer):

- Limited activity of PARPi outside BRCA1/2m or PALB2m
 ⇒ ~ 5-10% tumor response rates in unselected populations
 ⇒ Need to identify additional biomarkers of response

- Potential to increase and extend current PARPi activity
 ⇒ Increase response rates and/or duration of response?
 ⇒ Promising strategy

- Most agents currently tested did not sensitize to PARPi
 ⇒ Limited evidence of creation of “BRCAAness” phenotype in the clinic

✓ = evidence of clinical activity
× = limited clinical activity in unselected patient population or compared to single agent
✓ (✓) or (×) = initial clinical evidence (currently low number of TNBC cases)

Preliminary retrospective results suggest patient enrichment strategy

<table>
<thead>
<tr>
<th></th>
<th>All patients (N=31)</th>
<th>Biomarker unselected (N=8)</th>
<th>Biomarker selected (N=19)</th>
<th>Trodelvy (FDA approved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>27%</td>
<td>13%</td>
<td>33%</td>
<td>35%</td>
</tr>
<tr>
<td>CBR (≥ 6 mo)</td>
<td>32%</td>
<td>13%</td>
<td>47%</td>
<td>45%</td>
</tr>
</tbody>
</table>

ORR = overall response rate (complete + partial tumor responses, confirmed and unconfirmed)

CBR = clinical benefit rate (ORR + stable disease for ≥ 6 months)
Summary and conclusions: TNBC study

- Combination of ZEN-3694 + TALA demonstrated evidence of anti-tumor activity in previously treated patients with metastatic TNBC without gBRCA1/2 mutations.

- The combination is generally well-tolerated. Thrombocytopenia is the most common adverse event and dose-limiting toxicity, but it is manageable with dose adjustments. High dose intensity was maintained.

- PK is predictable, and PD data show meaningful and durable target engagement.

- Evidence that ZEN-3694 can induce synthetic lethality in combination with PARP inhibitors

- ZEN-3694 + talazoparib Simon Stage 2 is fully enrolled

- Translational Program to prospectively test identified biomarkers involved in response to combination regimen ongoing

ZEN-3694 can sensitize BRCA1/2 wild-type TNBC tumors to PARP inhibitors
Use of ZEN-3694 to prevent and reverse drug resistance
Tackling epigenetic-based drug resistance using epigenetic inhibitors

- Additional BETi-based combinations with immunotherapies in clinical development
- Optimal length of target engagement (hours vs. days)? Epigenotype specific?
- Post-BETi? EZH2, LSD1, HDAC, CBP/P300, PRMT inhibitors?

Common themes

- Requirement of the combination agent
 - Induce DNA damage (PARPi)
 - Kill re-sensitized tumor cells (ARSI)

- Early identification of biomarkers of response
Zenith advancing pipeline with strong collaborators

<table>
<thead>
<tr>
<th>ZEN-3694 BETi Programs</th>
<th>Pre-Clin.</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Registration Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR Independent mCRPC (+ enzalutamide, ARSi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNBC (+ talazoparib, PARPi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR Independent mCRPC IO Combo (+ Keytruda + enzalutamide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian Cancer IO Combo (+ Nivolumab + Ipilimumab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Combinations (multiple indications)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Collaboration with the National Cancer Institute Cancer Therapy Evaluation Program (NCI-CTEP)
- Leverage knowledge gained from prostate and breast cancer trials
10 years of BET inhibitor development in oncology indications

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2010 | First BETi published | - First BETi (benzodiazepines)
- Broad activity in cell lines and animal models |
| 2012 | BETi enter the clinic | - Potent, long half life molecules ("kinase inhibitor approach")
- Biology of epigenetic readers
- Single agent approach |
| 2015 | 20 BETi in clinical trials | - CYP liabilities, off-target toxicities
- Dosing near DLT, requiring dose holds and intermittent schedules
- Limited efficacy due to epigenetics biology |
| 2021 | 5 BETi in clinical trials | Combination-based approach
- Hematological cancers, myelofibrosis, and solid tumors (Ph. 2/3)
- Combinations target BET-dependent mechanisms |

Visibility

Early excitement
- First BETi show broad anti-tumor activity in preclinical models

Knowledge

Early attempts
- Toxicity
- All comer trials
- Limited single agent activity

We are here

Improvements
- Better drug properties
- Optimal dosing
- Targeted combinations (IO/PARPi/Kinase/ARSi)
- Selected patient populations
Acknowledgements

- **Patients and their family**

Principal Investigators CRPC Trial
- Rahul Aggarwal (UCSF)
- Joshi Alumkal (OHSU-U. Michigan)
- Wassim Abida (MSKCC)
- Michael Schweizer (U.Washington)
- David Nanus (Cornell)
- Allan Pantuck (UCLA)
- Elisabeth Heath (Karmanos)

East/West Coast Dream Teams
- Felix Feng (UCSF)
- Adam Foye (UCSF)
- Jiaoti Huang (Duke U.)
- Eva Corey (U. Washington)
- Moon Chung (U. Washington)
- Colin Pritchard (U. Washington)
- Eric Small (UCSF)
- Howard Scher (MSKCC)

Principal Investigators TNBC Trial
- Philippe Aftimos (Jules Bordet)
- Valentina Boni (START Madrid)
- Susan Domchek (UPenn)
- Ayca Gucalp (MSKCC)
- Erika Hamilton (Sarah Cannon)
- Jennifer Litton (MD Anderson)
- Lida Mina (MD Anderson)
- Mafalda Oliveira (VHIO)
- Kevin Punie (UZ Leuven)
- Mark Robson (MSKCC)
- Payal D. Shah (UPenn)
- Priyanka Sharma (UKansas)

Zenith Team
- Sarah Attwell
- Lisa Bauman
- Emily Gesner
- Sanjay Lakhotaia
- Karen Norek
- Michael H Silverman
- Margo Snyder
- Philip Wegge