

ZENITH EPIGENETICS

ZEN-3694 is a pan BET bromodomain inhibitor

- BET proteins (BRD 2, 3, 4) bind to histone acetylated lysines
- BRD4 is involved in 'superenhancer' formation, which drives oncogene expression (such as MYC, JUN, CDK6, Cyclins), as evidenced by the BRD4-NUT fusion in Nut-midline carcinoma
- Unlike writers and erasers, targeting the reader class of epigenetic modifiers is immediate and quickly reversible
- ZEN-3694 is a dual bromodomain pan-BET inhibitor currently in a phase 2 clinical trials in metastatic castration resistant prostate cancer (mCRPC) and triple negative breast cancer (TNBC), and soon to enter in ovarian cancer

10 years of BET inhibitor development in oncology indications

2010	2012	2015	2021			
First BETi published	BETi enter the clinic	20 BETi in clinical trials	5 BETi in clinical trials			
 First BETi (benzodiazepines) Broad activity in cell lines and animal models 	 Potent, long half life molecules (kinase inhibitor approach) Early clinical trials targeted cancers most sensitive in pre- clinical models CYP liabilities Off-target toxicities Dosing near DLT requiring dose holds and intermittent schedules Limited efficacy due to epigenetics biology Combinations-based approach Hematological cancers, myelofibrosis and solid tumors (Ph. 2/3) Combinations target BET-dependent resistance mechanisms (lower BETi dosing) 					
	We are					
	Early attempt	s he	here			
	• All comer tr • Limited sing	ials le agent activity	Improvements Better drug properties Novel Targeted combinations (IO/PARPi/Kinase/ARSi) Selected patient populations Optimal dosing			
	Early excitement • First BETi show broad anti- tumor activity in pre-clinical models					
20	10	2021	. 3			

Epigenetic mechanisms involved in resistance to anti-cancer therapies

- Tumor initially responds to treatment
- Acquisition of drug resistance almost invariably occurs
- Epigenetic mechanisms often involved in drug resistance
- ZEN-3694 can prevent and/or reverse resistance

ZEN-3694 is a leading best-in-class & clinically differentiated bromodomain inhibitor (BETi)

Zenith advancing pipeline with strong collaborators

Prostate cancer (mCRPC) program overview

Phase 2a completed; Phase 2b randomized study in implementation stage

2018	2019	2020	2021	2022	2023
Ph. 1B/2a: ZEN-369 Patients with prior abiraterone or enza	94 + enzalutamide progression on alutamide (n=75)		Ph. 2b r enzaluta Patienta Abirate	andomized trial: ZEN-3 amide vs enza s with poor prior respo rone (n=200)	694+ nse to

- Prolonged rPFS of 39 wks with ZEN-3694 + enzalutamide compared to expected rPFS of 12-24 wks with single agent enzalutamide
- Significant benefit in patients with poor response to abiraterone
- Target engagement in blood and in tumor
- Well tolerated, chronic daily dosing
- Study results published in Clinical Cancer Research (Aggarwal et al. 2020)
- Randomized Phase 2b study in poor responders to abiraterone in implementation stage 2 year study

Detection of target engagement in 4 paired biopsies (Baseline, C3D1)

Inhibition of androgen and MYC signaling, modulation of BET-dependent genes

- 3/4 patients already receiving enzalutamide at time of Baseline biopsy
- Inhibition of several hallmarks of prostate cancer by ZEN-3694

8

Evidence of ZEN-3694 + ENZA activity in low AR signaling tumors: Not expected to respond to single agent enzalutamide

Time to progression (m)

Epigenetic modulation by ZEN-3694 restores sensitivity to enzalutamide

A BRD4-dependent axis drives AR-independence and resistance to enzalutamide (results in press)

Combining talazoparib with ZEN003694 in people with triple-negative breast cancer without inherited faulty BRCA1/2 genes

Date of summary: December 2020 Study number: NCT03901469 | Study start date: June 2019 | Estimated study end date: January 2022

The full title of this abstract is: A phase 1b/2 study of the BET inhibitor ZEN003694 in combination with talazoparib for treatment of patients with TNBC without gBRCA1/2 mutations

ZEN-3694 + TALA is active in tumors that do not respond to single agent PARPi

- In breast cancer, only ~20% of patients receive a PARPi (BRCA1/2 mutant)
- PARPi single agent does not shrink TNBC tumors without mutations in BRCA1/2 or PALB2
- ZEN-3694 sensitizes tumors with functional BRCA1/2 (or PALB2), thus expanding the use of PARPi in TNBC
- ZEN-3694 reduces the mRNA levels of several DNA repair genes as a potential mechanism of sensitization to PARPi

Activity of ZEN-3694 + talazoparib in HRRwt TNBC tumors

Dose escalation + Stage 1 (December 2020)

- Patients screened for absence of gBRCA1/2m for enrollment on trial
- CLIA sequencing of biopsies from patients rule out tumor mutations in BRCA1/2 or PALB2
- \Rightarrow Combination activity unlikely due to single agent talazoparib

Mechanisms of resistance to Checkpoint therapy

Mechanisms of resistance to Checkpoint therapy

mCRPC clinical trial: immune modulation in patient blood and tumors

- Combination with a checkpoint inhibitor at lower dose ZEN-3694?
- Two ZEN-3694 Checkpoint inhibitor combination trials have just entered the clinic

Summary and conclusions

- ZEN-3694 is a leading BET inhibitor, with proof of concept clinical activity now shown in two indications
- BET protein target engagement has been demonstrated both in patient blood and tumor
- ZEN-3694 is safe and well tolerated, with good drug –like properties
- We are pursuing several promising combination strategies in the clinic, in multiple solid tumor indications

Zenith translational team

- Eric Campeau
- Lisa Bauman
- Emily Johnson
- Sanjay Lakhotia
- Karen Norek
- Michael H Silverman
- Margo Snyder
- Philip Wegge